• Categories Cloud
    This will be shown to users with no Flash or Javascript.
  • Directory Statistics
    • Active Links: 110832
    • Todays Links: 0
    • Active Articles: 4129
    • Todays Articles: 0

Trusted Site Seal

Error. Page cannot be displayed. Please contact your service provider for more details. (12)

Free Directory SubmitArticle Details

The Effect of System on Ventilator Performance

Date Added: November 08, 2012 10:25:13 PM
Author: Oleg Tchetchel
Category: Education

In the typical process of system design, the performance requirements are calculated and then used to select the appropriate fan. However, in many cases the effects of the relationship between the system components and the fan are not considered in the calculation or selection process. For instance, the resistance of a given size elbow at a given flow can be easily determined using the equivalent length calculation method. However, if that elbow is located at the fan inlet or outlet, further immeasurable losses will be imposed in addition to the simple loss through the elbow itself. Most importantly, these losses cannot be measured or even detected with field instruments because they are, in fact, a destruction of the fan performance characteristics. Standardized testing and rating methods for fans have been established by the Air Movement and Control Association, (AMCA). The test methods are described in AMCA Standard 210, titled Test Code for Air Moving Devices. Specifying fan equipment tested and rated in strict accordance with AMCA Standard 210 is the best way to ensure accurate fan performance. However, the system effects that alter or limit the ultimate performance remain the most frequent causes of field performance problems. The four most common causes of system-induced performance deficiencies: - Eccentric flow into the fan inlet. - Spinning flow into the fan inlet. - Improper ductwork at the fan outlet. - Obstructions at the fan inlet or outlet. Fans are typically tested and rated in prescribed test configurations defined by the Air Movement and Control Association. This is done to ensure standardized procedures and ratings so that system designers can make realistic choices among various manufacturers. Beyond the routine system resistance calculations, the location of some common components and their proximity to he fan inlet or outlet can create additional immeasurable losses commonly called System Efect. These losses, if not eliminated or minimized, will necessitate fan speed and horsepower increases to compensate for the performance deficiencies. The term system refers to the path through which air is pushed or pulled. Since it can be any combination of ducts, heat exchangers, filters, etc., through which air flows, a system can range in complexity. The system can be as simple as exhausting air through an opening in the wall of a building, or as involved as a multi-zoned system with varying flows and densities. The effects of the system design on the actual performance capability of a fan represent separate and equally important considerations. Fans perform correctly when air flows straight into the inlet. Air should be drawn into the fan inlet with an evenly distributed velocity profile. If the air is not drawn into the fan inlet evenly, performance deficiencies will result from the combined effects of turbulence and uneven air distribution. When the system attempts to change the direction of flow, the air hugs the outside of the inlet elbow entering the fan. This causes uneven, turbulent airflow into the fan. may also increase slightly, but far less than indicated by the increased power consumption. The evaluation and control of pre-spinning flow is more difficult than eccentric flow because of the variety of system connections or components that can contribute to pre-spin. Pre-spinning flow can result from any number of common situations. Two elbows in close proximity to one another can force the air to make consecutive turns in perpendicular planes to form a corkscrew effect. The ideal fan inlet connection creates neither eccentric nor spinning flow. Where an inlet duct is required, the best connection is a long straight duct with straightening vanes. However, it is usually necessary to adapt the system to the available space. When space becomes the limiting factor, two choices are available: - Install corrective devices in the duct. - Increase fan speed to compensate. AMCA Publication 201 - Fans and Systems, presents an in-depth discussion of system effect and provides methods for estimating losses associated with many common situations. If system effect situations cannot be avoided, their impact on performance should be estimated and added to the calculated system resistance prior to sizing or selecting the fan. Ignoring the system effect could lead to difficult field performance problems later. It could be that the installed fan does not have the necessary speed reserve, or the motor is not of sufficient brake horsepower. For additional information please refer to http://www.buffaloblower.com/fans/index.html. Oleg Tchetchel Fan and Blower Design Engineer Buffalo Blower Co. buffaloblower@buffaloblower.com http://www.buffaloblower.com/hvac/index.html http://www.buffaloblower.com/heat/index.html
Ratings Average rating: (0 votes)

No Comments Yet.

Visual Confirmation Security Code

*Enter the code shown:  

  • Help
  • Featured Website
  • Natural Skin Care - Expederm
  • Twitter Ticker
    Twitter icon

    My tweets

  • Latest Links
  • Latest Articles
    Rudimentary Criteria In Roofing Described
    Examining Systems Of Roofing, The Options For Root Criteria For Roofing, Compared - Roofing Solutions, Thinking About Core Factors For Roofing